exercice 1 : Hypothèse de Malthus

En 1800, l'Angleterre comptait 8 millions d'habitants et l'agriculture permettait de nourrir 10 millions de personnes.

Malthus (1766 – 1834) avait émis l'hypothèse suivante :

- chaque année, l'Angleterre voit sa population s'accroître de 2 %
- chaque année, l'amélioration des moyens agricoles permet de nourrir 400 000 personnes supplémentaires
- a) Traduire en terme de suites les deux phrases de l'hypothèse de Malthus
- b) A l'aide de la calculatrice, déterminer à partir de quelle année, l'agriculture anglaise ne suffit plus pour nourrir la population

exercice 2 : remboursement d'un prêt

Paul désire acheter un appartement sur 15 ans, soit 180 mois.

La banque lui accorde un prêt de 100 000 euros

Paul s'acquitte d'une mensualité M pour rembourser son prêt

- 1) Si le prêt est à taux zéro , quel devrait être le montant M des mensualités pour que Paul rembourse les 100 000 euros en 180 mois ?
- 2) La banque accorde le prêt à un taux mensuel de 0,4 %, ce qui signifie que tous les mois, se rajoutent les intérêts qui représentent 0,4 % de la somme restant à rembourser.

Par exemple, à la fin du premier mois , les intérêts représentent $\frac{0.4 \times 100\ 000}{100} = 400$ euros.

On note S_n la somme restant à rembourser le nième mois . Les conditions du prêt imposent que $S_0=100\ 000$ et on cherche à déterminer le montant M des mensualités pour obtenir un remboursement complet au bout de 180 mois , soit $S_{180}=0$

- a) Montrer que $S_{n+1} = 1,004S_n M$ pour tout entier $n \ge 0$ [1]
- b) Calculer S_1 , puis $S_1 S_0$ en fonction de M
- c) En adaptant [1], exprimer S_{n+2} en fonction de S_{n+1} [2]
- d) Montrer à l'aide de [1] et [2], que pour tout entier $n \ge 0$, $S_{n+2} S_{n+1} = 1,004(S_{n+1} S_n)$
- e) En déduire, en déterminant la nature de la suite $(S_{n+1}-S_n)$ que pour tout entier $n\geq 0$, $S_{n+1}-S_n=1{,}004^n(S_1-S_0)$ [3]
- f) A l'aide des relations [1] et [3], déterminer une relation entre S_n et M
- g) Déterminer M de telle manière que $S_{180} = 0$. Comparer avec le résultat de la question 1)

exercice 1 : Hypothèse de Malthus

a) Soit P_n la population en 1800 + n en millions d'habitants ; $P_n = 8 \times 1,02^n$ Soit Q_n la population en 1800 + n en millions d'habitants que l'agriculture peut nourrir $Q_n = 10 + 0,4$ n

b) On cherche le premier entier n tel que $P_n > Q_n$, soit $8 \times 1,02^n > 10 + 0,4n$

n	P_n	Q_n
0	8	10
10	9,75	14
20	11,89	18
30	14,49	22
40	17,66	26
50	21,53	30
60	26,24	34
70	32	38
80	39	42
90	47,54	46
85	43,06	44
87	44,80	44,80
86	43,92	44,40

Selon ce modèle, l'agriculture ne suffit plus à nourrir la population à partir de 1886

exercice 2 : remboursement d'un prêt

1)
$$\frac{100\ 000}{180}$$
 soit environ 556 \in

2)

a) Le n+1 ème mois les intérêts sont de
$$\frac{0.4 \times S_n}{100}$$
 = 0,004 S_n
donc $S_{n+1} = S_n + 0.004 S_n - M = 1.004 S_n - M$

b)
$$S_1 = 100 400 - M$$
, et $S_1 - S_0 = 400 - M$

c)
$$\begin{split} S_{n+2} &= 1{,}004S_{n+1} - M \\ S_{n+1} &= 1{,}004S_n - M \\ \text{Par différence }, S_{n+2} - S_{n+1} = 1{,}004(S_{n+1} - S_n) \end{split}$$

d) La suite $(S_{n+1}-S_n)$ est géométrique de raison 1,004 donc $S_{n+1}-S_n=1,004^n(S_1-S_0)$

$$\begin{array}{ll} e) & S_{n+1} = 1{,}004S_n - M \text{ , donc } S_{n+1} - S_n = 0{,}004S_n - M \\ & Or \ S_{n+1} - S_n = 1{,}004^n (S_1 - S_0) = 1{,}004^n (400 - M) \\ & donc \ 0{,}004S_n - M = 1{,}004^n (400 - M) \end{array}$$

f) Rembourser le prêt au bout de 180 mois, c'est rendre $S_{180} = 0$ la relation précédente avec n = 180 donne , $-M = 1,004^{180}(400 - M)$ donc $M(1,004^{180} - 1) = 400 \times 1,004^{180}$, soit $M = \frac{400 \times 1,004^{180}}{1,004^{180} - 1} = \frac{400}{1 - 1,004^{-180}} = 780$ €